Diffractive optical devices produced by light-assisted trapping of nanoparticles.

نویسندگان

  • J F Muñoz-Martínez
  • M Jubera
  • J Matarrubia
  • A García-Cabañes
  • F Agulló-López
  • M Carrascosa
چکیده

One- and two-dimensional diffractive optical devices have been fabricated by light-assisted trapping and patterning of nanoparticles. The method is based on the dielectrophoretic forces appearing in the vicinity of a photovoltaic crystal, such as Fe:LiNbO3, during or after illumination. By illumination with the appropriate light distribution, the nanoparticles are organized along patterns designed at will. One- and two-dimensional diffractive components have been achieved on X- and Z-cut Fe:LiNbO3 crystals, with their polar axes parallel and perpendicular to the crystal surface, respectively. Diffraction gratings with periods down to around a few micrometers have been produced using metal (Al, Ag) nanoparticles with radii in the range of 70-100 nm. Moreover, several 2D devices, such as Fresnel zone plates, have been also produced showing the potential of the method. The diffractive particle patterns remain stable when light is removed. A method to transfer the diffractive patterns to other nonphotovoltaic substrates, such as silica glass, has been also reported.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of polymer-SiO2 nanocomposite optical fibers with a new method

At first step polymer optical fibers (POFs) are used in short distance for optical data transmissions. At second step SiO2 nanoparticles were prepared by sonochemical-assisted method. Silica nanoparticles were added to polymer matrix to prepare polymer based nanocomposites. Most of the POF applications are in the medical and electrical devices. There are several methods for fabrication of POFs,...

متن کامل

Light Structuring for Massively Parallel Optical Trapping

iv Abstract Optical trapping, discovered in the 70's, allows moving and stabilizing small objects which sizes varies from atoms to particles of several microns. This technique, based on momentum conservation, is particularly well suited for manipulating biological matter (cells, organelles, vesicles, functionalized particles , etc.) and offers interesting potentialities for research in biotechn...

متن کامل

Optical trapping and light-induced agglomeration of gold nanoparticle aggregates

This paper demonstrates the optical trapping of micron-sized gold nanoparticle aggregates GNAs with a TEM00 mode laser at 532 nm and reports the observation of an unusual light-induced agglomeration phenomenon that occurs besides the trapping of the GNAs. The observed agglomerate has a 60–100 m donut-shaped metal microstructure with the rate of formation dependent on the laser power used. Citra...

متن کامل

Plasmonic Light-trapping and Quantum Efficiency Measurements on Nanocrystalline Silicon Solar Cells and Silicon-On-Insulator Devices

Quantum efficiency measurements in nanocrystalline silicon (nc-Si:H)solar cells deposited onto textured substrates indicate that these cells are close to the "stochastic lighttrapping limit" proposed by Yablonovitch in the 1980s. An interesting alternative to texturing is "plasmonic" light-trapping based on non-textured cells and using an overlayer of metallic nanoparticles to produce light-tra...

متن کامل

Microwave-assisted rapid synthesis of Co3O4 nanorods from CoC2O4.2H2O nanorods and its application in photocatalytic degradation of methylene blue under visible light irradiation

In this work, Co3O4 nanorods were successfully prepared by microwave-assisted solid state decomposition of rod-like CoC2O4.2H2O precursor within a very short reaction time (6 min) without the use of a solvent/surfactant and complicated equipment. The as-obtained Co3O4 nanorods were fully characterized by X-ray diffract...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics letters

دوره 41 2  شماره 

صفحات  -

تاریخ انتشار 2016